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MANAGING UNCERTAINTY AND FUZZINESS TROUGH

A GENERALIZED CONDITIONAL PLAUSIBILITY MODEL
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Abstract. The paper deals with a model for handling fuzziness and uncertainty simultane-

ously. The framework of reference is that of generalized conditional plausibility, in the sense of

Dempster conditioning rule, which contains as particular cases both conditional probability and

conditional possibility. Particular focus is placed on the interpretation of the interval fuzzy sets

by means of this model.
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1. Introduction

Starting from the seminal paper by Zadeh [44], the aim of different authors (see e.g. [6, 9,

12, 21, 22, 29, 30, 33, 36, 39, 40, 46, 47]) is to handle jointly randomness and fuzziness and,

in particular, to provide a generalized Bayesian inferential procedure capable of embedding

fuzziness.

An important application that has motivated this paper is related to the image reconstruction

on imaging for mapping cerebral electromagnetic activity by measuring the weak magnetic field

that it generates. Applications regard cognitive and functional studies to localize problematic

areas of brain in order to detect neurological diseases, for example areas with spiking in epilepsy.

Standard methods to address these problems are limited to the numerical methods or/and

statistical ones and/or signal processing methods.

In these applications from magnetic resonance imaging of the subject a discretization of the

brain is done and it is compared to a prototype of a theoretical brain, this theoretical brain is

divided, given an atlas of reference in different brain regions (see e.g. [27]). It is relevant to

correctly identify active brain regions in order to look for the problematic regions associated to

specific features. However, it is relevant to introduce fuzzyfication of this areas to adapt the

prototype of the brain region with the reconstruction of the brain of the subject.

In this kind of problems due to “imprecise” information in brain mapping, the regions (asso-

ciated to some feature) are generally identified by means of an atlas, but some sites of the brain

discretization could be associated to more features with a given “degree of belonging”. This

aspect leads to the association of each region on the atlas with a membership function on the

sites. The compatibility with a given brain involves uncertainty and approximation errors. By

using different atlas we can get different membership functions for some given regions over the

sites.
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Then two question naturally arise:

• How to handle a family of fuzzy memberships related to the same variable?

• How to handle a family of fuzzy memberships together with uncertain on activity in

these areas ?

The above questions lead to the problem to look for the mathematical connection with interval-

valued fuzzy sets, that were introduced as a natural extension of fuzzy sets under different

formalisms and names (see e.g. [1, 20, 34]) and with a framework able to manage together

uncertainty and fuzziness.

For providing a global answer to the questions, we refer to the interpretation of membership

of a fuzzy set in terms of a coherent conditional uncertainty measure, given in [5, 6] for the

probabilistic framework and extended to the possibilistic framework in [4] and to the framework

of theory of evidence in [11]. In these interpretations the membership of a fuzzy set is seen as

a coherent conditional probability, (or possibility or plausibility) regarded as a function of the

conditioning event.

These functions, from a syntactic point of view, coincide with a likelihood and so can be

strictly related to that given in [18, 28, 38], which propose to reread fuzzy sets as (probabilistic)

likelihood function.

Nevertheless, since usually the likelihood function is considered strictly related to the data of

an experiment, to regard the membership as a coherent assessment of a conditional uncertainty

measure, permits both to consider this assessment as a measure of a degree of belief of one or

more subjects and to refer to different uncertainty frameworks.

In this paper we focus on the extension of this interpretations to interval-valued fuzzy sets, so

that the extremes of the intervals are simply seen as two coherent conditional measures (precisely

conditional probability, conditional possibility or conditional plausibility). The two membership

functions can be justified in the field of managing uncertainty under partial knowledge. This

interpretation implies that interval-valued fuzzy sets could represent a family of (conditional)

probabilities arising when the information is partial and so it is closed to de Finetti theory

of coherent conditional probabilities [14] and its connections with Walley theory of imprecise

probabilities could come out.

In this paper we first introduce the fundamental concepts related to the formalization of

the interpretation of fuzzy sets in the three different uncertainty frameworks, highlighting the

similarities and differences.

The first result we highlight is that, when we limit ourselves to a single fuzzy subset, any

assignment φ(E|.) between 0 and 1 is, in fact, a coherent conditional plausibility Pl(E|.), but
also a coherent conditional probability P (E|.), and a coherent conditional possibility Π(E|.).

Then, one wonders what is the best framework for this representation that uses conditional

uncertainty measures. If we limit ourselves to the syntactic point of view up to this point we

have no reason to choose one or the other paradigm. However, if the values in the range of the

variable of reference are affected by uncertainty, it will be the uncertainty measure to guide the

choice of the framework.

Now, if, as usual, the initial data are related to several fuzzy subsets and to a measure of

uncertainty on the range of the variable, it would be necessary to check coherence (consistency),

with respect to the chosen uncertainty framework. Note that the two assignments φ(Ei|.) and
φ(.) can be separately coherent, but globally not coherent. Nevertheless, since the involved

events Ei naturally satisfy a form of logical independence, this guarantees the overall consistency

of the initial assignment.
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The second result is on the extension of the initial assessment to events that are union,

intersection and complementation of the initial Ei. The computation of the membership of

these new events is necessarily subject to the rules of the uncertainty measure of reference. For

them we study the intervals of coherence and the connections with the t-norms and t-conorms

used in the fuzzy set theory.

In this way we can give a syntactical motivation for choosing some particular t-norms and

t-conorms (such as the minimum and maximum), instead of others (such as Lukasiewicz t-norm

and t-conorm). After this comparative study we are able to easily introduce the interpretation

of IVF’s in these frameworks and provide a propagation of these values for the memberships on

other events such as fuzzy events. A simple example show our proposal from both a syntactic

and a semantic point of view.

2. Uncertainty framework

We briefly recall some definitions and results related to coherent conditional uncertainty

measure (focusing on plausibility and in two special members of this class, i.e. probability and

possibility).

We recall that a plausibility function Pl [15, 37] on a Boolean algebra A is a function such

that Pl(∅) = 0, Pl(S) = 1 and is n-alternating for every n ≥ 2, i.e., for every for every finite

family, A1, . . . , An ∈ A,

Pl

(
n∧

i=1

Ai

)
≤

∑
∅̸=I⊆{1,...,n}

(−1)|I|+1Pl

(∨
i∈I

Ai

)
.

The previous property implies the monotonicity of Pl with respect to set inclusion ⊆, hence

plausibility functions are particular normalized capacities [16]. The dual function Bel defined,

for every A ∈ A, as Bel(A) = 1− Pl(Ac), is called belief function.

A plausibility function Pl on A is completely singled out by its Möbius inverse called basic

probability assignment [37], defined for every A ∈ A as

m(A) =
∑

B∩A̸=∅

(−1)|A\B|Pl(B).

Such a function m : A → [0, 1] satisfies the following conditions: m(∅) = 0,
∑

A∈Am(A) = 1,

and, for every A ∈ A,

Pl(A) =
∑

B∩A̸=∅

m(B) and Bel(A) =
∑
B⊆A

m(B).

In the literature there are many definitions of conditioning for plausibility and belief functions,

we recall the following axiomatic definition (see [9, 10]):

Definition 2.1. Let A be a Boolean algebra and H ⊆ A\ {∅} an additive class (i.e., a set of

events closed under finite unions). A function Pl : A ×H → [0, 1] is a conditional plausibility

function if (and only if) it satisfies the following conditions

(i): Pl(E|H) = Pl(E ∧H|H), for every E ∈ A and H ∈ H;

(ii): Pl(·|H) is a plausibility function on A, for every H ∈ H;

(iii): Pl(E ∧ F |H) = Pl(E|H) · Pl(F |E ∧H), for every E ∧H,H ∈ H and E,F ∈ A.

Moreover, given a conditional plausibility function, the dual conditional belief function Bel(·|·)
is defined for every event E|H ∈ ℘(S)×H as

Bel(E|H) = 1− Pl(Ec|H).
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An easy consequence of Definition 2.1. is a weak form of disintegration formula [11] for the

plausibility of any conditional event E|H with respect to a partition H1, ..., HN of H

Pl(E|H) ≤
N∑
k=1

Pl(Hk|H)Pl(E|Hk). (1)

Other different definitions of conditioning are present in the literature: the most interesting

and famous is that due to Jaffray and Walley (see [25, 42]) defined by the following equation :

Pl(F |H) =
Pl(F ∧H)

Pl(F ∧H) +Bel(F c ∧H)
(2)

and obtained as upper envelope of particular classes of conditional probabilities.

We notice that conditional plausibility defined by equation (2) does not satisfy axiom (iii) of

Definition 2.1. and then, in particular, it does not satisfy (1).

Finally we point out that the class of conditional plausibilities (defined in Definition 2.1.)

contains in particular important classes: conditional probabilities, as introduced in [13, 17, 26],

and T -conditional possibilities ([8]), with the t-norm T equal to the usual product (in symbols

TP -conditional possibility).

As it follows from the results in [11], every conditional plausibility function Pl(·|·) on A×H
is completely determined by a linearly ordered class of plausibility functions on A with disjoint

sets of focal elements, which is called agreeing class of plausibility functions.

As proved in [11], when A is finite, every conditional plausibility function Pl(·|·) on A×H is

completely determined by a linearly ordered class of plausibility functions on A with disjoint sets

of focal elements, which is called minimal agreeing class of plausibility functions. In general,

if H ⊂ A \ {∅} such a class is not unique, but uniqueness is obtained in case H = A \ {∅}.
Among the agreeing classes giving rise to a Pl(·|·) on A × H there is a unique agreeing class

{Pl0, . . . , P lk} of plausibility functions on A, called minimal agreeing class, such that

• Pl0(·) = Pl(·|H0
0 ) with H0

0 =
∪

H∈HH;

• for α > 0, Plα(·) = Pl(·|Hα
0 )

with Hα
0 = {H ∈ H : Plβ(H) = 0, β = 0, . . . , α− 1} ̸= ∅.

The class {Pl0, . . . , P lk} is such that for every H ∈ H there is α ∈ {0, . . . , k} such that

Plα(H) > 0. Moreover, {Pl0, . . . , P lk} agrees with the conditional plausibility Pl(·|·) on A×H
in the sense that, for every E|H ∈ A ×H, denoting with αH the minimum index in {0, . . . , k}
such that PlαH (H) > 0, it holds that

Pl(E|H) =
PlαH (E ∩H)

PlαH (H)
.

We now introduce the concepts of coherent conditional plausibility and coherent extension.

Definition 2.2. A real function defined on an arbitrary set of conditional events G =

{Ei|Hi}i∈I is a coherent conditional plausibility assessment if and only if it is the restriction

of a conditional plausibility Pl′ : B×H → [0, 1], where H is the additive set spanned by {Hi}i∈I
and A the algebra spanned by {Hi, Ei}i∈I .

The main characteristic of coherent assessments on an arbitrary set of (conditional) events

is their extensibility to any superset maintaining coherence ([13, 17, 26] for probability, [9] for

possibilities, [11] for plausibilities).

By using the representation of a conditional plausibility trough agreeing classes, introduced

before, it is possible to prove the following Theorem 2.1 characterizing a coherent conditional
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plausibility assessment ([11]). It extends those proved in [5, 6] and in [8] for probabilities and

possibilities, respectively.

Theorem 2.1. Let G be an arbitrary set of conditional events. For an assessment σ : G to [0,1]

the following statements are equivalent:

j) σ is a coherent conditional plausibility;

jj) for every finite set F ⊆ G there exists a minimal agreeing class {PlF0 , . . . , P lFk };
jjj) for every finite set F ⊆ G the following systems (Sα

F ), with α = 0, 1, 2, ..., k ≤ n, admit

a solution Xα = (xα
1 , ...,x

α
jα
) with xα

j = mα(Hj) (j = 1, ..., jα):

(Sα
F ) =



∑
Hk∧Fi ̸=∅

xαk · Pl(Ei|Fi) =
∑

Hk∧Ei∧Fi ̸=∅
xαk , ∀Fi ⊆ Hα

0∑
Hk∈Hα

0

xαk = 1

xαk ≥ 0, ∀Hk ⊆ Hα
0

where Hα
0 is the greatest element of K such that

∑
Hi∧Hα

0 ̸=∅
m(α−1)(Hi) = 0.

Remark 2.1. The previous Theorem 2.1 puts in evidence that to prove coherence of an

assessment, it is sufficient to prove coherence in any finite subset. This is due to the fact that

no continuity condition is required.

Definition 2.3. Given an event E and a partition L, a likelihood function is an assessment

on {E|Hi : Hi ∈ L} (that is a function f : {E} × L → [0, 1]) satisfying (only) the following

trivial condition:

(L1) f(E|Hi) = 0 if E ∧Hi = ∅ and f(E|Hi) = 1 if Hi ⊆ E.

The following Theorems 2.2 and 2.3 are the main results for representing a membership as a

likelihood function in the plausibilistic, probabilistic and possibilistic frameworks.

Theorem 2.2. Let L = {Hj}j∈J be any partition of Ω and let E be any event. For every

function f : {E} × L → [0, 1] satisfying the condition (L1) the following statements hold:

a) f is a coherent conditional probability;

b) f is a coherent T -conditional possibility (for every continuous t-norm T );

c) f is a coherent conditional plausibility.

Proof. Due to characterization of coherent assessments of conditional plausibility (the same for

conditional probability [5] and T -possibility [9]) it is sufficient to prove that the statements hold

for every finite partition. The proof of that follows by the obvious solvability of the systems in

condition jjj) when the events Hi are a partition. �

The previous result points out that “syntactically” a probabilistic likelihood function is in-

distinguishable from a possibilistic likelihood function or a plausibilistic likelihood function, i.e.,

any function f satisfying the minimal requirement of consistence (L1) can be extended either

as a probabilistic strategy or as a possibilistic strategy or as a plausibility strategy. Obviously,

the extensions are syntactically different, so a criterion for choosing the framework must be de-

termined. This criterion could be guided from semantic motivations or related to syntactically

reasons. In the last case the choice could be ruled by the “prior” information. The following

Theorem 2.3 essentially proved in [23], studies coherence of a global assessment containing a

coherent assessment on a partition L = {Hj}j∈J of Ω and a finite number of likelihood functions

fi = f(Ei|Hj) (i = 1, ...,m).
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Definition 2.4. Let us consider any partition L = {Hi}i∈I of Ω and with two Boolean

algebras AL and A where AL = ⟨L⟩ is the algebra generated by L and A a super-algebra of AL.

A plausibilistic [probabilistic] [possibilistic] strategy is a map σ : A× L → [0, 1] satisfying the

following conditions for every Hi ∈ L:

(S1) σ(E|Hi) = 0 if E ∧Hi = ∅ and σ(E|Hi) = 1 if E ∧Hi = Hi, for every E ∈ A;

(S2) σ(·|Hi) is a plausibility [a finitely additive probability] [ a finitely maxitive possibility]

on A.

Now we recall the notion of almost logical independence that will have a relevant role in the

following, as shown by the next Theorem 2.3.

Definition 2.5. Let us consider any partition L = {Hi}i∈I of Ω, a set of events {Ei : i ∈ I}
are almost logical independent with respect to L if, denoting with E′

i either Ei or E
c
i , the following

conditions hold:

(i) the events Ei (i = 1, ...,m) are logically independent, i.e.,
∧

i∈I E
′
i ̸= ∅;

(ii) for every H ∈ L,
∧

i∈I E
′
i ∧H = ∅ =⇒ E′

i ∧H = ∅ for some i ∈ I.

Theorem 2.3. Let L be a partition of Ω, consider a family of likelihood function fi related to

events Ei almost logically independent with respect to L and let us consider, on the algebra AL

generated by L, a probability P , a possibility Π, and a plausibility Pl. If the events Ei are almost

logical independent with respect to L, the following statements hold:

a) the global assessment {fi, P} is a coherent conditional probability;

b) the global assessment {fi,Π} is a coherent T -conditional possibility (for every continuous

t-norm T );

c) the global assessment {fi, P l} is a coherent conditional plausibility.

3. Interpretation of fuzzy sets trough conditional uncertainty measures

We recall the main steps to construct the model of fuzzy sets theory by referring to coherent

conditional uncertainty measures.

Let X be a (possibly not numerical) variable, with range CX , and, for any x ∈ CX , let us

indicate by x the event {X = x}.
For any property γ related to the variable X, let us consider the Boolean event:

Eγ = “You claim that X has property γ”,

where “You ” denotes any real (or fictitious) person.

First of all we remark that, if {γi}i=1,..,m is a set of properties related to the same variable

X, then the Boolean events Eγi (i = 1, ...,m) are almost logical independent with respect to CX .

Remark 3.1. We notice that the almost logical independence w.r.t. CX is guaranteed also

when for some i and j one has γi = ¬γj or when γi is a superlative or a diminutive property of

γj . Indeed, You can claim both “X has the property γi” and “X has the property ¬γj”, or claim

only one of them or finally claim neither of them. A similar reasoning can be made when γi is

the superlative or a diminutive property of γj .

Referring now to the state of information of You, let us consider the most appropriate model

to deal with uncertainty in the reference context containing events of kind Eγ . Let φ(·|·) be the

conditional measure related to the chosen model.

Then, an assessment {φ(Eγ |x)}x∈CX provides the measures of how much You believe in Eγ,

when X assumes the different values in its range.
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The conditional uncertainty measures taken into account in this paper are conditional plau-

sibilities and the two main subclasses of them, i.e. conditional probabilities and conditional

possibilities.

By Theorem 2.2, it is clear the total freedom in assessing the function φ(Eγ |·), in each of the

above frameworks for dealing with uncertainty. In fact any such assessment is only required to

satisfy the trivial consistency condition (L1) (and assuming any value in [0, 1] otherwise) can be

regarded as a coherent conditional probability, a coherent conditional possibility or a coherent

conditional plausibility.

Then φ(Eγ |·) comes out to be a natural interpretation of the membership function µγ(·) and
so the next definition is syntactically unexceptionable and has a semantic value for all those

situations where the assignment of membership is naturally subjective.

Definition 3.1. Let X be a variable with range CX , γ a property related to X and φ a coherent

conditional plausibility (or, more specifically, probability or possibility) on a set of conditional

events containing Eγ |x, for every x ∈ CX . A fuzzy subset E∗
γ of CX is any pair

E∗
γ = (Eγ , µγ),

with µγ(x) = φ(Eγ |x) for every x ∈ CX .

Obviously under this interpretation of fuzzy sets it is necessary to study the role of the

conditional uncertainty measures when one considers more than one fuzzy set.

Indeed a good model must guarantee the possibility of maintaining the same freedom in

assessing memberships related to different properties and assuring the possibility to use the

usual logical paradigm for combining fuzzy sets.

Theorem 2.2 assures that, for every finite family of fuzzy sets {Eγi}, almost logically inde-

pendent with respect to CX , every assessment φ(Eγi |x) is a coherent conditional plausibility (a

coherent conditional possibility and a coherent conditional probability).

Now, referring to the considerations made in Remark 3.1., it is clear that the elements which

usually form the initial data of a problem, are almost logically independent and so the assessment

of memberships is free.

Now the problem is to combine different fuzzy sets referred to the same variable X, that is

to introduce operations of complementation, union and intersection, in a way that coherence is

maintained. Obviously, these operations depend on the chosen framework of reference.

By following [5, 6] for the probabilistic interpretation and [4] for the possibilistic interpretation,

the operation of complementation of a fuzzy set E∗
γ and those of union and intersection between

two fuzzy sets E∗
γ and E∗

δ , can be directly obtained by using the rules of coherent conditional

plausibility [probability or possibility] and the logical independence between Eγ and Eδ with

respect to the partition generated by the relevant variable.

Let us denote by γ ∨ δ and γ ∧ δ, respectively, the properties “γ or δ”, “γ and δ”.

Note that the symbols ∧ and ∨ do not indicate Boolean operations, since γ and δ are not

Boolean objects.

Let us define:

Eγ∨δ = Eγ ∨ Eδ, Eγ∧δ = Eγ ∧ Eδ. (3)

Let us consider now the relevant fuzzy sets E∗
γ = (Eγ , µγ(x)) and E∗

δ = (Eδ, µδ(x)) and define

E∗
γ ∪ E∗

δ = E∗
γ∨δ = (Eγ∨δ, µγ∨δ(x)), E∗

γ ∩ E∗
δ = E∗

γ∧δ = (Eγ∧δ, µγ∧δ(x)).

The rules of the different considered uncertainty measures induce the following constraints:
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• if µ is a coherent conditional probability one has:

µγ∨δ(x) = µγ(x) + µδ(x)− µγ∧δ(x). (4)

This implies that we need to refer only to t-norms and their dual t-conorms in the

class of Frank [23], i.e., those defined for x, y ∈ [0, 1] and λ ∈ [0,+∞], as

TF
λ (x, y) = logλ

(
1 +

(λx − 1)(λy − 1)

λ− 1

)
. (5)

Distinguished instances of previous class are:

– the minimum TM (x, y) = TF
0 (x, y) = min{x, y},

– the algebraic product TP (x, y) = TF
1 (x, y) = x · y,

– the Lukasiewicz t-norm TL(x, y) = TF
+∞(x, y) = max{x+ y − 1, 0}.

The relevant dual t-conorms are listed

– SM (x, y) = SF
0 (x, y) = max{x, y},

– SP (x, y) = SF
1 (x, y) = x+ y − x · y,

– SL(x, y) = SF
+∞(x, y) = min{x+ y, 1}.

Moreover, by Fréchet bounds, one has that, for any given x ∈ CX the assessment

µγ(x), µδ(x) and µγ∧δ(x) is coherent if and only if it holds

TL(µγ(x), µδ(x)) ≤ µγ∧δ(x) ≤ TM (µγ(x), µδ(x)) (6)

and so, by equation (4),

SM (µγ(x), µδ(x)) ≤ µγ∨δ(x) ≤ SL(µγ(x), µδ(x)). (7)

• If µ is a coherent conditional possibility, as shown in [4] one has:

for any given x ∈ CX the assessment µγ(x), µδ(x), µγ∧δ(x) and µγ∨δ(x) is coherent if

and only if

µγ∨δ(x) = SM (µγ(x), µδ(x)) (8)

and

0 ≤ µγ∧δ(x) ≤ TM (µγ(x), µδ(x)) (9)

• If µ is a coherent conditional plausibility, as shown in [4, 11] one has:

for any given x ∈ CX the assessment µγ(x), µδ(x), µγ∧δ(x) and µγ∨δ(x) is coherent if

and only if

0 ≤ µγ∧δ(x) ≤ TM (µγ(x), µδ(x)) (10)

and

SM (µγ , µδ) ≤ µγ∨δ(x) ≤ min(µγ(x) + µδ(x))− µγ∧δ(x), 1). (11)

Remark 3.2. We notice that in the probabilistic interpretation, fixed the value for the

membership function of the fuzzy intersection, the value for the membership function of the

fuzzy union is uniquely determined [6], by the equation (4).

On the contrary, in the possibilistic interpretation [4], independently of the value of µγ∧δ(x) =

Π(Eγ ∧ Eδ|x), for the fuzzy union we get the unique value obtained by equation (8).

In the case of plausibility framework the value of µγ∨δ(x) is not univocally determined, but

it must satisfy the constrain given by equation (11).

Obviously, since probabilities and possibilities are particular plausibilities, any pair of t-norm

and t-conorm on Frank’s class and any pair (max, T ), with T any t-norm, can be used to compute

the union and intersection of fuzzy sets.
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On the contrary no pair in other famous classes (Hamacher class [24], Yager class [41], Dubois

and Prade class [19]) in these classes there exist (x′, y′), (x′′, y′′) ∈ [0, 1]2 such that

T (x′, y′) < x′ + y′ − S(x′, y′); T (x′′, y′′) > x′′ + y′′ − S(x′′, y′′),

so that the extension of the assessment

µγ(x) = Pl(Eγ |x), µδ(x) = Pl(Eδ|x)

to µγ∧δ(x) and µγ∨δ(x) trough (T, S) could re-sult either not two-alternating and not two-

monotone and so the extension cannot be a coherent conditional plausibility. At the same time

it cannot be a coherent conditional belief function.

Inequalities (9) and (11) emphasize a first difference with the probabilistic framework (see

(7)), in fact the upper bounds in the two frameworks coincide while the lower bounds differ, in

fact under a probability P the lower bound is not 0, but coincides with Fréchet-Hoeffding lower

bound, that is determined by the Lukasiewcz t-norm TL, so

max{0, P (Eγ |x) + P (Eδ|x)− 1} ≤ v ≤ min{P (Eγ |x), P (Eδ|x)}.

All what discussed above only refers to two fuzzy sets, so it is necessary to consider the

problem related to any family of fuzzy sets {E∗
γ1 , ..., E

∗
γn} and study if it possible to compute all

the intersections among the relevant fuzzy sets, by using the same t-norm.

The answer is not unique and depends on the t-norm we use.

The following result, essentially proved in [11], shows that it is possible to compute by TM

the intersections of the elements of any finite family of fuzzy sets {E∗
γi}, maintaining coherence.

We report the proof for completeness.

Theorem 3.1. Let {E∗
γi}i∈I be a finite family of fuzzy sets related to a variable X, with {Eγi}i∈I

almost logical independent with respect to CX , let

E∗
∧i∈Jγi

=
(
E∧i∈Jγi , TM ({µγi(x) with x ∈ CX : i ∈ J})

)
be the fuzzy sets (with J ⊆ I), then for the extension

{µ∧Jγi(x) with x ∈ CX : i ∈ J} for J ⊆ I

with

µ∧
J γi(x) = φ(∧i∈JEγi |x) = TM

(
µγi(x)

)
for any x ∈ CX

of the assessment

{µγi(x) with x ∈ CX : i ∈ J}
the following statements hold:

• the assessment is a coherent conditional plausibility

• the assessment is a coherent conditional probability

• the assessment is a coherent conditional possibility.

Proof. From theorem 2.1 and Remark 2.1. it is sufficient to prove coherence for any finite subset

of the family. Then, in this case, we need to prove the result for every finite family {Eγj |Ax}x∈F
with F any finite subset of CX .

Since the membership functions µγj (·) is a coherent conditional probability (see Theorem 2.3),

there is a coherent extension on
∧

j∈J Eγj |Ax for any J ⊆ I and x ∈ F .

For a given x ∈ F , assume without loss of generality that µγi(x)) ≤ µγi+1(x) for i = 1, 2.
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We can define for any J1 ⊆ I with 1 ∈ J1

fx(
∧
i∈I

Eγi) = µγ1(x).

Moreover for a set J ⊆ I with 1 ̸∈ J , let r = min{i : i ∈ I
∩

J} and s = max{i : i ∈ I
∩

J}
(r < s)

fx(
∧
j≥r

Eφj

∧
i<r

Ec
γi) = µγr(x)− µγr−1(x)

and 0 on the other atoms. Any fx is a probability, so a probability P on the algebra generated

by {Eγi , Ax : i ∈ I, x ∈ F} can be defined as

P (B) =
∑

Ax∧B ̸=∅

1

n
fx(B ∧Ax)

(with n the cardinality of F) and it gives rise to a strictly positive probability and it generates

a conditional probability that is an extension of {µγi}I .
Then, the assignment f is a coherent conditional probability and then a coherent conditional

plausibility.

Furthermore, the above assignment fx, for a given x ∈ F , is a possibilistic distribution and

so a possibility Π on the algebra generated by {Eφi , Ax : i ∈ I, x ∈ F} can be defined as

Π(B) = max
Ax∧B ̸=∅

1

n
fx(B ∧Ax)

(with n the cardinality of F) and it gives rise to a strictly positive possibility and it generates

a P-conditional possibility that is an extension of {µφi}I . �

An analogous result can be proved by considering the t-norm TP .

Theorem 3.2. Let {E∗
γi}i∈I be a finite family of fuzzy sets related to a variable X, with {Eγi}i∈I

almost logical independent with respect to CX , let

E∗
∧i∈Jγi

= (E∧i∈Jγi , TP ({µγi(x) with x ∈ CX : i ∈ J}))

be the fuzzy sets (with J ⊆ I), then for the extension

{µ∧Jγi(x) with x ∈ CX : i ∈ J} for J ⊆ I

with

µ∧Jγi(x) = φ(∧i∈JEγi |x) = TP (µγi(x)) for any x ∈ CX
of the assessment

{µγi(x) with x ∈ CX : i ∈ J}
the following statements hold:

• the assessment is a coherent conditional plausibility

• the assessment is a coherent conditional probability

• the assessment is a coherent P-conditional possibility.

Proof. For the same reasons discussed in the proof of previous Theorem 3.1, we limit the proof

to a finite family {Eγj |Ax}x∈F with F any finite subset of CX . Since the membership functions

µγj (·) is a coherent conditional probability, there is a coherent extension on
∧

j∈J Eγj |Ax for any

J ⊆ I and x ∈ F .

For a given x ∈ Fn, we can define for any J ⊆ I

fx(
∧
i∈J

Eγi) = Πi∈Jµγi(x)
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for any set J ⊆ I. Any fx is a probability, so a probability P on the algebra generated by

{Eφi , Ax : i ∈ I, x ∈ F} can be defined as

P (B) =
∑

Ax∧B ̸=∅

1

n
fx(B ∧Ax)

(with n the cardinality of F) and it gives rise to a strictly positive probability and it generates

a conditional probability that is an extension of {µγi}I .
Then, the assignment f is a coherent conditional probability and then a coherent conditional

plausibility.

Furthermore, the above assignment fx, for a given x ∈ Fn, is a possibilistic distribution and

so a possibility Π on the algebra generated by {Eφi , Ax : i ∈ I, x ∈ F} can be defined as

Π(B) = max
Ax∧B ̸=∅

fx(B ∧Ax)

it corresponds to assign to any x prior possibility equal to 1. �

The above results cannot be extended to any Frank t-norm, in fact by considering the t-norm

TL, the extension to the intersection computed trough TL can be not a coherent conditional

probability, as the following example shows (see [11]).

Example 3.1. Let Let H = {H,Hc} be a partition, and E = {Ei|H}i=1,2,3 be a set of

conditional events such that ∧3
i=1E

∗
i ∧ H ̸= ∅ for any H ∈ H, so the events in E are logical

independent with respect to H.

Suppose that P (E1|H) = P (E2|H) = 0.6 and P (E3|H) = 0.7, while P (Ei|Hc) = 0.5 for

i = 1, 2, 3.

It is easy to check that the conditional probability P is coherent. Furthermore it is easy to

prove that, from Fréchet-Hoeffdings bounds, the coherent values for P for an event E obtained

as finite intersection of Ei are such that:

0 ≤ P (E1 ∧ E2 ∧ E3|H) ≤ 0.6; 0.2 ≤ P (E1 ∧ E2|H) ≤ 0.6;

0.3 ≤ P (E1 ∧ E3|H) ≤ 0.6 0.3 ≤ P (E2 ∧ E3|H) ≤ 0.6

We could show that the function f(∧IEi|H) I ⊆ {1, 2, 3} taking the minimum coherent values

is not coherent: in fact the function

f(E1 ∧ E2 ∧ E3|H) = 0, f(E1 ∧ E2|H) = 0.2, f(E1 ∧ E3|H) = 0.3,

f(E1|H) = f(E2|H) = 0.6, f(E3|H) = 0.7

is not a coherent conditional probability.

However, the t-norm TL can be used under conditional plausibilities (see [11]).

Theorem 3.3. Let {E∗
γi}i∈I be a finite family of fuzzy sets related to a variable X, with {Eγi}i∈I

almost logical independent with respect to CX , let

E∗
∧i∈Jγi

= (E∧i∈Jγi , TL({µγi(x) with x ∈ CX : i ∈ J}))

be the fuzzy sets (with J ⊆ I), then for the extension

{µ∧Jγi(x) with x ∈ CX : i ∈ J} for J ⊆ I

with

µ∧Jγi(x) = φ(
∧
i∈J

Eγi |x) = TL(µγi(x) : i ∈ J) for any x ∈ CX

of the assessment

{µγi(x) with x ∈ CX : i ∈ J}
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the assessment is a coherent conditional plausibility.

Proof. Due to the logical independence of the events Eγi w.r.toX, the assessment P = {Pl(Eγi |x) :
i = 1, ...,m}x∈CX , is coherent with a conditional plausibility; we prove that it can be coherently

extended by computing, for any x ∈ CX , every intersection trough TL, that is

Pl(
∧

J⊆{1,...,m}

Eγi |x) = TL{Pl(Eγi |x) : i ∈ J}, (12)

is a coherent conditional plausibility.

Actually we prove the result for m = 3 but the basic assignment for any x ∈ CX can be built

analogously.

Assume without loss of generality that Pl(Eγi |x) ≤ Pl(Eγi+1 |x) for i = 1, 2.

Let m(∧3
i=1Eγi) = TL(Pl(Eγ1 |x), ..., P l(Eγ3 |x)),

m(∨3
j=1(E

c
γj ∧i ̸=j Eγi)) = TL(Pl(Eγ1 |x), P l(Eγ2 |x))− TL(Pl(Eγ1 |x), ..., P l(Eγ3 |x)),

m(Ec
γ1 ∧

3
j=2 Eγj ) = TL(Pl(Eγ2 |x), P l(Eγ3 |x))− TL(Pl(Eγ1 |x), P l(Eγ2 |x)),

m(Ec
γ2 ∧j=1,3 Eγj ) = TL(Pl(Eγ1 |x), P (Eγ3 |x))− TL(Pl(Eγ1 |x), P l(Eγ2 |x)),

m(∨3
i=1Eγi ∧j ̸=i E

c
γj ) = Pl(Eγ1 |x)− TL(Pl(Eγ1 |x), P l(Eγ3 |x)),

m(∨3
i=2Eγi ∧j ̸=i E

c
γj ) = Pl(Eγ2 |x)− Pl(Eγ2 |x).

Furthermore m(∧3
i=1E

c
γj ) = 1− Pl(Eγ3 |x).

It is easy to check that the function m taking the above values and zero otherwise is a basic

assignment generating the function Pl defined by equation (12), that therefore is coherent.

�

Consider now the problem of complementary which essentially coincides for the three frame-

works. Denoting by (E∗
γ)

′ = E∗
¬γ = (E¬γ , µ¬γ) the complementary fuzzy set of E∗

γ , due to the

logical independence of {Eγ , E¬γ}, with respect to CX , any value in [0, 1] is coherent for µ¬γ(x)

for any x.

The main remark is related to the fact that the relation E¬γ ̸= Ec
γ holds. In fact, while

Eφ ∨Ec
γ = Ω, due to the logical independence with respect to CX of {Eγ , E¬γ}, we have instead

Eγ ∨ E¬γ ⊆ Ω. Then it is not necessary to require µ¬γ(x) = 1 if µγ(x) < 1. In particular we

can take

µ¬γ(x) = 1− µγ(x). (13)

In fact, the above function µ¬γ is a likelihood function and so a coherent conditional plausibility

(as well as a coherent TP -conditional possibility and a coherent conditional probability).

4. Interval-valued fuzzy sets

Interval-valued fuzzy set (IVF, for short) is a concept introduced by Zadeh in [45], and,

independently, by other authors (see [31, 35]).

IVF is defined by a map from the range of a variable X to the set of closed intervals in [0, 1]

so that, for every x ∈ CX , µ(x) ∈ [a(x), b(x)].

One of the interpretation of the interval describing an IVF is based on the idea, introduced in

[1], of defining a fuzzy set by a membership function and a non-membership function separately,

known as “Intuitionistic Fuzzy Sets”.

In [21] motivations for fuzzy sets with two membership functions are reviewed, and the con-

nections between, interval-valued fuzzy sets and possibility theory are studied.
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We think that the interpretation of membership of fuzzy sets in therms of coherent conditional

plausibility (and in particular probability and possibility), adopted in this paper, can provide

an interpretation of interval-valued fuzzy sets which is a “natural” generalization from both a

syntactic and a semantic point of view.

Indeed, in this framework, for every x ∈ CX , µγ(x) ∈ [aγ(x), bγ(x)] simply means that, when

X assumes the value x, the degree of belief of You in Eγ , measured by the function chosen for

handling uncertainty, is not less than aγ(x) and not greater than bγ(x).

Definition 4.1. Let X be a variable with range CX , γ a property related to X and aγ(.) and

bγ(.) two functions from CX to [0, 1], satisfying condition (L1) and such that aγ(x) ≤ bγ(x) for

every x ∈ CX .

An interval-valued fuzzy subset E∗∗
γ of CX is any pair

(Eγ , [aγ(x), bγ(x)]).

An interval-value fuzzy set represents a fuzzy set with “imprecise” membership, that, in our

interpretation has a clear meaning: the degree of belief in the event “You claim that X has the

property γ, supposing that X = x, is a number between aγ(x) and bγ(x), i.e. for every x ∈ CX ,

φ(Eγ |x) ∈ [aγ(x), bγ(x)], where φ is the uncertainty measure of reference.

Proposition 4.1. Let

E∗∗
γ = (Eγ , [aγ(x), bγ(x)])

be a interval-valued fuzzy set, then any assessment φ(Eγ |x) on CX such that, for any x ∈ CX

aγ(x) ≤ φ(Eγ |x) ≤ bγ(x),

is a coherent conditional plausibility (or, more specifically, probability or possibility).

Proof. Due to Theorem 2.2 any conditional assessment P (E|x) on a partition (x ∈ CX) is a

coherent conditional probability.

Analogously, due to the same Theorem 2.2, any selector σγ(x) of [aγ(x), bγ(x)] is a coherent

conditional plausibility, a coherent conditional probability and a coherent conditional possibility.

�

The above result emphasizes the freedom on assessing initial intervals, independently of the

uncertainty framework of reference, in particular it shows that any selector, that is any function

from CX to [0,1] taking values inside the intervals is a coherent assessments with reference to

the aforementioned frameworks.

The next result shows the role of the uncertainty framework in computing intervals related

to logical dependent IVF’s.

Theorem 4.1. Let X be a variable, Eγ and Eδ two events almost logical independent with

respect to CX and E∗∗
γ = (Eγ , [aγ(x), bγ(x)], E

∗∗
δ = (Eδ, [aδ(x), bδ]) two IVF. Then the following

statements hold:

i) if we refer to conditional plausibility, that is µγ(x) = Pl(Eγ |x) and µδ(x) = Pl(Eδ|x),
then one has

E∗∗
γ∧δ = (Eγ∧δ, [0, TM (bγ , bδ)], E∗∗

γ∨δ = (Eγ∨δ, [SM (aγ , aδ), SL(, bγ , bδ]),

ii) if we refer to conditional probability, that is µγ(x) = P (Eγ |x) and µδ(x) = P (Eδ|x), then
one has

E∗∗
γ∧δ = (Eγ∧δ, [TL(aγ , aδ), TM (bγ , bδ)], E∗∗

γ∨δ = (Eγ∨δ, [SM (aγ , aδ), SL(bγ , bδ]),
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iii) if we refer to conditional possibility, that is µγ(x) = Π(Eγ |x) and µδ(x) = Π(Eδ|x), then
one has

E∗∗
γ∧δ = (Eγ∧δ, [0, TM (bγ , bδ)], E∗∗

γ∨δ = (Eγ∨δ, [SM (aγ , aδ), SM (bγ , bδ]).

Proof. Taking into account the monotonicity of t-norms and t-conorms, the intervals related to

union, intersection and complementation of IVF’s will have their minimum by combining the

minimal values of the involved intervals and their maximum by combining the maximal values

and we obtain the assessments by using Proposition 4.1. and Theorems 3.1 3.2, 3.3.

For plausibilities, to compute bγ∧δ(x), we need to apply the same equation to the fuzzy sets

(Eγ , bγ(x)) and (Eδ, bδ(x)) and chose the maximum value, that is TM (bγ(x), bδ(x)).

For computing aγ∨δ(x) we need to apply equation (11) to the fuzzy sets (Eγ , aγ(x)) and

(Eδ, aδ(x)) and chose the minimum value, that is SM (aγ(x), aδ(x)).

To compute bγ∧δ(x) we need to apply the same equation to the fuzzy sets (Eγ , bγ(x)) and

(Eδ, bδ(x)) and chose the maximum value, that is min(bγ(x) + bδ(x)) − bγ∧δ(x), 1). Then, con-

sidering again equation (10), we obtain bγ∨δ(x) ≤ min(bγ(x) + bδ(x), 1).

The proof of ii) and iii) goes along the same line: it is necessary to use equations (6) and

(7) for the proof of ii), while it is necessary to refer to equations (8) and (9) in order to prove

iii). �

Now the question is: starting from a set of {Eφ1 , ..., Eφn} of logically independent events with

respect to CX and the relevant µi = f(Eγi |x) is it possible (i.e. coherent with the measure of

reference) to compute all the intersections among the fuzzy sets, by using the same t-norm?

Again the answer is: it depends on the t-norm. If, for instance, we consider the minimum,

then the answer is positive in all the considered frameworks of reference:

Theorem 4.2. Let {E∗∗
γi } = {(Eγi , [aγi(x), bγi(x)] : i ∈ I} be a finite family of interval-valued

fuzzy sets related to a variable X, with Eγi logically independent with respect to CX . Let us

consider the interval-valued fuzzy set

E∗∗
∧iγi =

(
E∧iγi , [TM (aγi(x) : i ∈ I), TM (bγi(x) : i ∈ I)]

)
and let σ(x) be any selector of [TM (aγi(x) : i ∈ I), TM (bγi(x) : i ∈ I)].

Then the following statements hold:

• σ(x) is a coherent conditional plausibility.

• σ(x) is a coherent conditional probability,

• σ(x) is a coherent conditional possibility.

Proof. The theses follow from Proposition 4 and Theorems 3.1, 3.2 and 3.3. �

The next Theorem 4.3 proves that under a plausibility we can compute, for every x ∈ CX ,

the membership of the intersection of a family of fuzzy sets by using t-norm TL. This shows

that considering coherent conditional plausibility, instead of coherent conditional probability, for

measuring the degree of belief of You on the events Eγ , we actually capture more parallelism with

the classical theory of fuzzy sets, where the inference is made by using t-norms and t-conorms.

Theorem 4.3. Let {E∗∗
γi } = {(Eγi , [aγi(x), bγi(x)] : i ∈ I} be a finite family of interval-valued

fuzzy sets related to a variable X, with Eγi logically independent with respect to CX . Let us

consider the interval-valued fuzzy set

E∗∗
∧iγi = (E∧iγi , [TL(aγi(x) : i ∈ I), TL(bγi(x) : i ∈ I)]

and let θ(x) be any selector of [TL(aγi(x) : i ∈ I), TL(bγi(x) : i ∈ I)].

Then the following statement holds:
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• θ(x) is a coherent conditional plausibility.

Proof. The thesis follows from Proposition 4.1. and Theorem 3.3. �

To make this approach to IVNs more understandable, we present a school example of their

use.

Example 4.1. Let U be an urn containing balls of diameters {di = 0, i cm} (i = 1, ..., 5),

whose composition is only partial known, we have only the following information: the balls with

diameter d1 are 1/4, the balls with diameter d2 or d3 are 1/4 and those with diameter d4 or d5
are 1/2.

Suppose now to perform an experiment, connected to a bet, consisting in extracting from U

a ball, without showing it.

Due to the lack of information on the composition of the urn, the probability of the elements

of the algebra spanned by the events Di = “The drawn ball has diameter di” is not unique,

depending on two parameters θ1, θ2 with 0 ≤ θ1 ≤ 1/4 and 0 ≤ θ2 ≤ 1/2:

A D1 D2 D3 D4 D5 D1 ∨D2 D1 ∨D3 D1 ∨D4 D1 ∨D5 D2 ∨D3 ...

P 1/4 θ1 1/4− θ1 θ2 1/2− θ2 1/4 + θ1 1/2− θ1 1/4 + θ2 3/4− θ2 1/4 ...

P 1/4 1/4 1/4 1/2 1/2 1/2 1/2 1/2 3/4 1/4 ...

P 1/4 0 0 0 0 1/4 0 1/4 1/4 1/4 ...

Since the event Di form a partition, the upper probability P is a plausibility and the lower

probability P is a belief function [32].

Suppose there is an optimistic decision maker, which in presence of ambiguity, choses, by

referring to the upper bound of the class of available (prior) probabilities.

Let us consider now the (Boolean) events

Es = “You claim that the diameter is small”

and

El= “‘You claim that the diameter is large”

and let us suppose to require to each person of a a group to express, with a number in [0, 1],

his/her degree of belief σj
si and σj

li
j = 1, ...,m on the conditional events Es|di and El|di, with

(i = 1, ..., 5).

We recall that the assessment provided by every person j for the two class of conditional

events is a coherent conditional probability, possibility and plausibility such as the lower bound

σli = minj σ
j
li
and σsi = minj σ

j
si and the upper bound σsi = maxj σ

j
si and σsi = maxj σ

j
si of

the class.

Since the uncertainty on the elements of the algebra generated by the diameters is a plausi-

bility, we regard σlj and σsj and then σsi σli and σsi σli as a coherent conditional plausibility.

So we can consider the two IVF (in the framework of plausibility):

(Es, [σsi , σsi ]), (El, [σli , σli ]).

5. Fuzzy events

Let us discuss now the concept of fuzzy event, introduced by Zadeh in [44]. In the context

of the interpretation of a fuzzy set as a pair, whose elements are a (Boolean) event Eγ and a

conditional measure σ(Eγ |x), coincides exactly with the event

Eγ=“You claim that X has property γ”.
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In presence of an uncertainty measure (probability, possibility and plausibility) on the algebra

generated by CX , the assessment together µγ is coherent with respect to the relative measure

(see Theorem 2.3) and so coherently extendible to Eγ (Theorem 2.1 for plausibilities, [8] for

conditional probabilities and [4, 8] for conditional possibilities).

Finally we consider plausibility of a fuzzy event. If the variable X has finite range, by taking

a probability or a T -possibility as “prior”, the only coherent value for the probability P (Eγ)

and possibility Π(Eγ) are, respectively,

P (Eγ) =
∑
x∈CX

P (Eγ |x)P (x) , (14)

Π((Eγ) = max
x∈CX

Π(Eγ |x)Π(x). (15)

We note that formula in equation (14) coincides with Zadeh’s definition of a probability of a

“fuzzy event” given in [43, 44].

The equations (14) and (15) are based on the disintegration formula which hold for both

probability and possibility. As discussed in [11] it does not hold for plausibility. In fact, for

plausibility just a weak form of disintegration holds, (see inequality in (1)). Then, we need to

compute plausibility of an event Eφ by means the Choquet integral (see [3]):

Pl(Eφ) =

∮
µφ(x)dP l(x) =

1∫
0

Pl(µφ(x) ≥ t)dt. (16)

Note that

Pl(Eφ) = sup
P∈P

P (Eφ),

where P = corePl = {P : P ≤ Pl}.
In fact, when a set P ⊂ corePl of probabilities with supP = Pl one has that the extremes

of the above interval could be not sharp, that means that the extreme are not obtained by no

probability and in this case the vertexes of the closure of the set P need to be computed.

Let us consider now the IVF E∗∗
γ = (Eγ , [aγ(x), bγ(x)] and let σ the measure on the algebra

spanned by CX . Then, for the fuzzy event Eγ , we are able to compute the interval of coherent

values for its measure of uncertain (plausibility, probability or TP -possibility), by using in the

case of finite CX equation (14) to compute probability.

P (Eγ) ∈
[ ∑
x∈CX

a(x)P (x),
∑
x∈CX

b(x)P (x)
]
.

Under ambiguity, that means that the prior is partially specified we need to refer to no-additive

uncertainty measures.

When the prior measure is a possibility by referring to equation (15) when CX is finite we

obtain

Π(Eγ) ∈
[
max
x∈CX

a(x)Π(x),max
x∈CX

b(x)Π(x)
]

When the prior measure is a plausibility by referring to equation (16) we obtain

Pl(Eγ) ∈
[ 1∫
0

Pl(a(x) ≥ t)dt,

1∫
0

Pl(b(x) ≥ t)dt
]

in the case that the core of plausibilities,

corePl = {P : p ≤ Pl}
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coincides with the coherent extensions of the partially specified prior. When CX is finite we

could look for the vertexes of the class P and compute the sharp bounds by means of these set,

as aforementioned.

6. Conclusions

To have a consistent framework able to handle together uncertainty and fuzziness, we refer

to an interpretation of a fuzzy set consisting in a Boolen event of the kind “You claim that the

variable X has the characteristic γ” and a conditional measure regarded as a function of the

conditioning event. Then we study which part of the classical theory of fuzzy sets is captured

when the uncertainty framework varies in the class of plausibilities. The study puts in evidence

the natural develop of the procedure, when the above interpretation is used in situations of

partial knowledge on the range of the variables considered. The main results are related to

the interpretation of interval-valued fuzzy sets, where the rules of the uncertainty measure of

reference naturally permit to manage inference on them.
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